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Data Converters 



Amplitude Quantization
Unwanted signals in the output of a system are 
called noise.

Movement of carriers in devices

Distortion

Smooth nonlinearities      

Frequency attenuation

Large Abrupt Nonlinearities

Signals coming from other sources

Interference from radiating sources

Interference from electrical coupling

Undesired outputs inherent in the data conversion process itself

Review from Last Time:



Characterization of Quantization Noise
Sinusoidal  excitation

• Consider an ADC (clocked)

Theorem:  If n(t) is a random process, then 

provided that the RMS value is measured over a large interval where the 
parameters  σ and μ are the standard deviation and the mean of <n(kT)>
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where T is the sampling interval and TL is a large interval

This theorem can thus be represented as

Review from Last Time:



Characterization of Quantization Noise
Sinusoidal  excitation
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Although derived for an ADC, same expressions apply for DAC
SNR for saw tooth and for triangle excitations are the same
SNR for sinusoidal excitation larger than that for saw tooth by 1.76dB
SNR will decrease if input is not full-scale
Equivalent Number of Bits (ENOB) often given relative to quantization noise SNRdB
Remember – quantization noise is inherent in an ideal data converter!

Review from Last Time:



Equivalent Number of Bits  (ENOB)

These definitions of ENOB are  based upon noise or noise and distortion

SNR - 1.76ENOB  
6.02

=
SNDR - 1.76ENOB  

6.02
=

Some other definitions of ENOB are used as well – e.g. if one is only  interested
in distortion, an ENOB based upon distortion can be defined.

ENOB is useful for determining whether the number of bits really being specified 
is really useful

Review from Last Time:



Engineering Issues for Using Data Converters

1. Inherent with Data Conversion Process
• Amplitude Quantization
• Time Quantization
(Present even with Ideal Data Converters)

2. Nonideal Components
• Uneven steps
• Offsets
• Gain errors
• Response Time
• Noise
(Present to some degree in all physical Data Converters)

How do these issues ultimately impact performance ?



Nonideal Transfer Characteristics 
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Nonideal Transfer Characteristics 
Uneven Steps
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Actual transfer characteristics can vary considerably from one device to another



Nonideal Transfer Characteristics 

XOUT
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Ideal Transfer 
Characteristic Line

Nonideal Transfer 
Characteristics of DAC

Uneven Steps

This is termed a nonlinearity in the data converter

Linearity metrics (specifications) include INL, DNL, THD and SFDR



Characterization of Nonlinearities 

End points are the outputs at the two extreme Boolean inputs

XOUT

XIN

End Point 

Nonideal Transfer 
Characteristics of DAC

End Point 



Characterization of Nonlinearities

End point fit line



Characterization of Nonlinearities

Define the INL at any input code k by: 

Linearity metrics:
INL
DNL
THD 
SFDR

( ) ( )k OUT FIT
INL =X k -X k

Integral Nonlinearity (INL)

Measure of worst-case deviation from linear



Integral Nonlinearity (INL)

Define the INL by: 

Linearity metrics:
INL
DNL
THD 
SFDR
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Integral Nonlinearity (INL)

Often expressed in LSB: 
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Integral Nonlinearity (INL)

Often expressed in LSB: 

Linearity metrics:
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Characterization of Nonlinearities
Linearity metrics:

INL
DNL
THD 
SFDR

Differential Nonlinearity (DNL)

Measure of worst-case resolving capabilities

Define the DNL at any input code k by: 

( ) ( )k OUT OUT LSBF OUT OUT LSB
DNL =X (k)-X k-1 -X X (k)-X k-1 -X≅



Differential  Nonlinearity (DNL)
Linearity metrics:

INL
DNL
THD 
SFDR

( )k OUT OUT LSB
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Characterization of Nonlinearities
Linearity metrics:

INL
DNL
THD 
SFDR
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Linearity Metrics for ADC and DAC are Analogous to Each Other



Integral Nonlinearity (INL)
Linearity metrics:
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Integral Nonlinearity (INL)
Linearity metrics:

INL
DNL
THD 
SFDR

( ) ( )k TRAN FIT
INL =X k -X k

( ) ( ) ( )1TRAN TRAN
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Integral Nonlinearity (INL)
Linearity metrics:

INL
DNL
THD 
SFDR
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Differential Nonlinearity (DNL)
Linearity metrics:

INL
DNL
THD 
SFDR
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Equivalent Number of Bits -ENOB 
(based upon linearity)

Generally expect INL to be less than ½ LSB

If INL larger than ½ LSB, effective resolution is less than specified resolution



Equivalent Number of Bits -ENOB 
(based upon linearity)
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Spectral Characterization
Linearity metrics:

INL
DNL
THD 
SFDR

( )IN M
X =X sin ωt+θ

XIN
DAC
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If nonlinearities present, XOUT given by
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Spectral Characterization
( )IN M

X =X sin ωt+θ
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Ak,    k>1 are all spectral distortion components

Generally only first few terms are large enough to represent 
significant distortion
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Spectral Characterization
( )IN M

X =X sin ωt+θ

( ) ( )
2

OUT 0 1 1
X =A +A sin ωt+θ+ A sin kωt+θ
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Generally XM is chosen nearly full-scale and input is offset by XREF/2
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Direct measurement of Ak terms not feasible

Ak generally calculated from a large number of samples of XOUT(t)



Spectral Characterization

Key theorem useful for spectral characterization
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Theorem:  If a periodic signal x(t) with period T=1/f  is band-limited to frequency hf 
and if the signal is sampled N times over an integral number of periods, NP, then 
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Spectral Characterization

Key theorem useful for spectral characterization
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the sampling period. 

• This theorem is usually not stated although widely used
• Often this theorem is misunderstood or misused
• If hypothesis not exactly satisfied, major problems with trying to use this theorem
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Spectral Characterization
Key theorem useful for spectral characterization

Theorem:  If a periodic signal x(t) with period T=1/f  is band-limited to frequency hf 
and if the signal is sampled N times over an integral number of periods, NP, then 
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the sampling period. 

• Usually Np is a prime number (e.g. 11, 21, 29, 31)

• If N is a power of 2, the Fast Fourier Transform (FFT) is a 
computationally efficient method for calculating the DFT

• Often N=4096, 65,536, …

• FFT is available in Matlab and as subroutines for C++



Spectral Characterization
Key theorem useful for spectral characterization

Theorem:  If a periodic signal x(t) with period T=1/f  is band-limited to frequency hf 
and if the signal is sampled N times over an integral number of periods, NP, then 
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the sampling period. 

A0, A1, A2, A3, … are the magnitudes of the  DFT elements X(0), 
X(NP+1), X(2NP+1), X(3NP+1), … respectively



Spectral Characterization



Spectral Characterization
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